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Abstract—We consider the problem of estimating the evolution-
ary history of a set of species (phylogeny or species tree) from
several genes. It has been known however that the evolutionary
history of individual genes (gene trees) might be topologically
distinct from each other and from the underlying species tree,
possibly confounding phylogenetic analysis. A further compli-
cation in practice is that one has to estimate gene trees from
molecular sequences of finite length. We provide the first full
data-requirement analysis of a species tree reconstruction method
that takes into account estimation errors at the gene level. Under
that criterion, we also devise a novel algorithm that provably
improves over all previous methods in a regime of interest.

I. INTRODUCTION

We consider the problem of estimating the common evo-
lutionary history, more precisely the species tree, of a set
of n species using sequence data from multiple genes or
loci. It is well known that the estimated genealogical history
of a gene (gene tree) may be topologically distinct from
the species tree that encapsulates it, possibly confounding
phylogenetic analysis [11]. Here we consider an important
source of such incongruence, known as incomplete lineage
sorting (ILS), where two lineages fail to coalesce in their
most recent common ancestral population. This may lead one
of the lineages to first coalesce with a more distantly related
population thereby producing incongruence. Several species
tree reconstruction methods have recently been developed
that address ILS. See for instance [8] and references therein.
Several such methods rely on a statistical model known as
the multispecies coalescent (MSC): independent coalescent
processes are performed in each ancestral population and
these are assembled to produce a gene tree. This process
is illustrated in Figure 1 below. For more on phylogenetic
inference and coalescent theory see, e.g., [4], [5], [19].

The accuracy of multiloci reconstruction methods has been
evaluated empirically, for instance, in [7], [10]. The focus
here is the mathematical characterization of the performance
of such methods. Prior theoretical work has focused mainly
on statistical consistency under the multispecies coalescent;
see e.g., [10], [2], [13], [9]. That is, assuming access to either
correct gene trees or correct pairwise distances (or coalescence
times) for each gene, a method is statistically consistent if
it is guaranteed to converge on the correct species tree as
the number of genes, m, tends to infinity. [17] studies the
rates of convergence (in m) for several such methods. For
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instance, letting f > 0 denote the smallest branch length in
the species tree, in the limit f — 0, it was shown that the
GLASS algorithm [13], an agglomerative clustering method
in which the dissimilarity between each pair of species is
taken to be the minimum of the coalescent times among the
m genes, needs the number of genes m to scale as f~!. On
the other hand, m needs to scale as f‘2 for the STEAC
algorithm [10], which is also an agglomerative clustering
method which instead uses the average of the coalescent times
across the m genes as the measure of dissimilarity. In reality,
however, one has to estimate gene trees and coalescent times
from finite, say, length-£ molecular sequences. Taking into
account the resulting estimation errors at the gene level is
key to mathematically quantify and compare the performance
of different methods (see e.g., [14], [24], [6]). Intuitively,
for instance, the “minimum” used in GLASS may be more
sensitive to estimation errors than the “average” used in
STEAC. We make progress towards this goal by performing
the first full data requirement analysis of some species tree
reconstruction methods.

Our contribution is two-fold. First it is known that, in
order to reliably reconstruct a single gene tree, it is both
necessary [22] and sufficient [3] for the sequence length &k to
scale as f~2. Therefore, in light of this and the results in [17],
one might expect that the total amount of data required mk
(since there are m genes, each of length k) must scale as f~3
and f~* for GLASS and STEAC respectively. We show that,
by a crucial modification of STEAC, one obtains an algorithm
that is guaranteed to reconstruct the species tree exactly with
high probability as long as m scales like f~2 and k& > 1. In
particular, it suffices for the overall sample complexity, mk, to
scale like f~2 (which is much smaller than =2 and f~* in the
regime of interest, where f < 1). Secondly, unlike GLASS,
STEAC only works under the restrictive molecular clock
assumption [19], where the mutation rates are constant across
the populations in the species tree. We extend the previous data
requirement result beyond the molecular clock by devising a
novel STEAC-like species tree reconstruction algorithm which
we call METAL (Metric algorithm for Estimation of Trees
based on Aggregation of Loci). This algorithm is a distance
based method where the distances are defined by concatenating
the molecular sequences corresponding to all the loci (genes).
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Fig. 1: A species tree (thick, shaded tree) and two samples
from the MSC. Notice that while the topology of Gene 1
agrees with the species tree, the topology of Gene 2 does not.

A. Preliminaries and Notation

1. The Species Tree. At the heart of the model is an unknown
species tree S = (V,E) which represents the evolutionary
history of n isolated populations; these are represented by
the size n leaf set L of this tree. The goal is to learn S. For
the sake of simplicity, we will assume that each branch of
the species tree corresponds to a population of size N and as
is standard in coalescent theory, we will assign each branch
e € F alength 7. > 0 in coalescent time units (which is
proportional to the number of generations represented by the
branch). The smallest branch length, f £ min, 7., will play
an important role in our analysis and results. For a pair of
vertices X,Y € V, we will use 7%y C E to denote the
path connecting X and Y in S and 7xy will denote the
length of this path. Notice that {Tap} 4 Ber i an ultrametric
with respect to S%. We will let A £ MaXA BeL TAB
denote the diameter of the species tree. Finally, to each
branch e € E, we will also associate a mutation rate, [
and we will let pu;, £ mineep pte and py 2 maxecr fle
denote the smallest and the largest mutation rates, respectively.

2. The Multispecies Coalescent and Gene Trees. Following
[15], we assume that a multispecies coalescent (MSC) process
produces m (independent) random genealogies GV, ..., G(™)
based on S. These encode, say, the evolutionary history of
m different genes or loci on the genome and will be referred
to as gene trees henceforth. It is easier to understand the
MSC constructively. Consider Figure 1, where the thick,
shaded tree is the species tree S with edges {e;}?_;. Time (in
coalescent time units) starts at O at the leaves and increases
towards the root of the tree. By Tap (resp. Tapc), we
mean the time when the parent population of A and B
(resp. the parent population of A, B, and C') speciates. Let
us first consider one random draw from the MSC, Gene 1.
A, B, and C each have a copy (allele) of Gene 1 and the
MSC describes the evolutionary history of the lineages
corresponding to these alleles. From time O until T4, the
lineages corresponding to A and B are in isolated populations
and hence do not “coalesce”. However, once these lineages
reach the parent population of A and B (i.e., eq4), they have

Sthat is, for any three leaves A, B, C such that S restricted to A, B, C has
the topology ((A, B),C), we have that Taop < Tac = TBC

a chance to coalesce. According to the MSC, the coalescence
happens after a random time drawn according to the Exp(1)
distribution, i.c., P(tY}, — Tap > ) = e,z > 0. Now, this
coalesced lineage and the lineage corresponding to C' do not
interact until time T4pc. They then coalesce at a random
time tfaxlj)gc’ where tfj}éc — Tapc ~ Exp(1). This gives us
a random gene tree with the topology ((4, B),C). On the
other hand, in the case of Gene 2, the lineages corresponding
to A and B do not coalesce in e4 So, at time Tspc, there
are three lineages present in es;. According to the MSC,
when there are multiple lineages in the same population,
each pair independently coalesces after a random time period
drawn according to the Exp(1) distribution. In this case, the
genealogies of B and C' alleles coalesce (at time tg)c) before
A and B, thus giving us a second random tree with topology
(A,(B,C)). Notice that while the genealogy of Gene 1
agrees with the topology of S, the genealogy of Gene 2 does
not. This is an example of ILS which, as mentioned earlier,
is a fundamental road block for learning the tree of life.

We refer the reader to [1] for more on our modeling
assumptions and to [15] for more details on the MSC.
However, we will state the model here for completeness. The
density of the likelihood of a gene tree G(*) = (V(i),é'(i))
can be written down as follows. For each branch e € F
of the species tree let Iéi) and Oéi) be the number of
lineages entering and leaving the branch e respectively.
Let téf)s, be the s—th coalescent time in the branch e.
Then, the density of the likelihood of G(*) is given by
Meep TLET% e (- (/57 [l 1]
where, for convenience, we let téfz, and t(i)lm 0911 be
respectively the divergence times of the popﬁiaftion n e and
of its parent population.

3. Observation Model and the Inference Problem. Much
of the prior work on understanding the theoretical complexity
of learning species trees from multiple loci has assumed that
exact gene trees are available. However, in reality one needs
to estimate these gene trees from molecular sequences and
indeed there has been a recent thrust towards investigating the
effect of errors in estimating the gene trees (see e.g., [14],
[24], [6]). Our approach will be to take this error into account
explicitly and in fact bypass the reconstruction of the gene
trees altogether.

We model the sample generation process according to the
standard Jukes-Cantor (JC) model (see e.g., [19]). For this,
given a gene tree G = (V, ), we will associate to each é € &,
a probability ps (whose form we will make explicit below).
The JC model assigns a character from {A, T, G, C} uniformly
at random to the root of G. Moving away from the root, with
probability pg, each edge € changes the state of its ancestor to
one of the other three, chosen uniformly at random. The states
at the leaves of G are assembled into a length n vector to get
the first sample; this process is repeated k times to generate
the data set. Notice that £ models the number of sites or the
sequence length of each gene.



Now, we define p;. To each edge € of the random gene tree
G is associated a random length o; according to the MSC.
Also, given an edge e € E of the species tree, we will write
oene to denote the length of the portion of ¢ that overlaps with
e. This lets us define the effective (mutation rate adjusted)
branch lengths, §; = ZeeE eTene- As before, for any two
vertices X,Y € V), wgﬂ, denotes the path joining X and Y
in G and oxy (resp. dxy) denotes the length of this path
under o (resp. under §). Now, for an edge € € £, we define

_ A 301 _ —%8:)1
pe = 3(1—e73%)N

The goal then, is to learn the structure of S given the data
{x"}, clmljex) Where {x"} ;e is the data generated from
g according to the JC model.

The JC model was chosen because it lends itself to easy
presentation. Since the techniques developed here are distance-
based, they can be generalized to the more realistic Gen-
eralized Time-Reversible (GTR) model [23] using spectral
techniques as in [16], [12].

II. MAIN RESULTS

We now state the main results of the paper. First, we will
deal with the case where the strong molecular clock [19]
assumption holds. We will then turn to the more general case.

1. The Molecular Clock Assumption Holds. While assuming
the molecular clock hypothesis (which is equivalent to believ-
ing that all mutations happen at the same rate through time and
across populations) is often unrealistic, it has proved to be a
useful abstraction for developing powerful methods. In our set-
ting, this is equivalent to assuming that y, = p > 0,Ve € E.

In order to infer the species tree from samples, we will
begin by defining a distance measure on the leaves. For each
pair of leaves A, B € L, we define

> 1 A xEh (1)

i€[m],jelk]

- 1
PAB = —

which can be thought of as the normalized hamming distance
between the molecular sequences corresponding to species A
and B. Our first result is that, in expectation, this is not only
a metric on L, but is in fact an ultrametric with respect to S.

Theorem 1. {E [pap|}a per forms an ultrametric with re-
spect to the true species tree S. In fact, for any triple
A, B,C € L with the topology ((A, B),C) in S, we have

3e~ %HTAch
8+ 3
The proof follows from the observation that, by definition,
we have E [pac] = E {% 1 — e~5%ac J, where d4¢ is the
random gene tree distance that satisfies d4c = prac + 2u2
with Z ~ Exp(1l). We refer the reader to [1] for the exact

details. This result inspires the following procedure for recon-
structing S: Use {Pap}a per as a dissimilarity measure for

E[pac) = E[psc] > E[pas] + 2

'Notice that this definition implies that the probability pxy of dis-
agreement 4be:tween the characters at vertices X and Y satisfies, pxy =
3(1— e 30xY)

L and use a standard algorithm that accepts a dissimilarity
measure and returns an ultrametric tree (see e.g., [4], [19]
for background on distance based methods). For the sake of
simplicity, we may assume that we use the UPGMA algorithm
[20], the standard method for bottom-up agglomerative cluster-
ing, in order to produce an ultrametric tree. Then, recalling that
1 denotes the (common) mutation rate across the populations
represented by the species tree, S and A denotes diameter of
S, we have the following performance guarantee.

Theorem 2. Given an € > 0, using UPGMA on L with the
dissimilarity measure {Pap} A Ber results in the correct tree
S being output with probability no less than 1 — € as long as
the number of genes m, and the sequence length k satisfy

m > Cy(p, A,n,e) x f72 and k> 1, 3)

§p,A n
where Cy(p, A,n,€) = w‘i-*gixwlog (8(:,)>

Theorem 2, whose proof is sketched in Section IV-A , tells
us that the above procedure succeeds with high probability
as long as we get molecular sequences of length at least one
from at least O(f~2) genes. That is, a total sequence length
of mk = O(f~?) suffices for reliable learning. Notice that the
procedure we propose is similar to the STEAC [10] algorithm
except, instead of using the average coalescent time as the
distance measure, we use (1), which can be considered as the
normalized hamming distance. It turns out that this fact is
important in obtaining our improved sample complexity result.

2. The Molecular Clock Assumption Does Not Hold. We
will now consider the more general case where the strong
molecular clock assumption does not hold. That is, we will
assume that each branch e of the species tree has a (possibly)
distinct mutation rate f.

First, observe that E[pap| as defined above is no longer
an ultrametric with respect to S and therefore, the above
procedure (and for a similar reason, the STEAC algorithm)
cannot be used to recover the species tree. In such situations,
one usually turns to distance methods that rely on the 4-point
condition (see e.g., [19]). However, it is not immediately clear
that one can define a metric that satisfies this condition in our
setting. Our next result, which is arguably the most important
contribution of this paper, shows precisely that this can be
done. Towards this end, for A, B € L, we define the following
measure of dissimilarity dap = —% log (1 - %E [ﬁAB]) ,
where pap is as defined in (1). Theorem 3, which parallels
Theorem 1, shows that this “idealized” dissimilarity measure
is actually an additive metric with respect to S*. See, e.g., [19]
for more on tree metrics. This result is especially interesting
since phylogenetic mixtures are known to cause problems for
distance-based methods [21].

fRecall that this means that the four point condition holds, i.e., for a
quadruple of leaves A, B,C,D that are such that ((A,B),(C,D)) or
(((A, B), C), D) holds with respect to .S, the distances satisfy dap+dcp <
dac +dpp =dap +dpc-



Theorem 3. The set of dissimilarities {dap}a Ber forms
an additive metric with respect to S. In fact, suppose the
leaves A,B,C,D € L are such that either ((A, B),(C, D))
or (((A, B),C), D) holds with respect to S, then

dac +dpp =dap +dpc > dap +dcp + 0aad, (4)

where 0qq = %log (%,u,;(l —e N+ 1) > 0 and pgp
mineeg W, as defined in Section I-A.

It is somewhat surprising that this result is true. This
theorem tells us that if one pretends as though all samples
came from a single gene tree and estimate it, then this tree
suggested by the “concatenated molecular sequence” has the
same topology as S. We sketch the proof in Section IV-B

In light of this, we propose the following algorithm, which
we call METAL (for Metric algorithm for Estimation of Trees
based on Aggregation of Loci), to reconstruct S. First, define
the following sample-based corrected measure of dissimilarity
(with D4 p as defined in (1)):

Tan 2~ log (1 - gmg> . )

Now, use any algorithm that returns an additive tree (like
Neighbor Joining [18]) using {dap}a per (from (5)) as
the input dissimilarity measure. Recall that yy and pp are
respectively the maximum and minimum mutation rates, and
A is the diameter of the species tree S (c.f. Section I-A). We
then have the following result.

Theorem 4. For any € > 0, the METAL algorithm succeeds
in reconstructing (the unrooted version of) S with probability

at least 1 — € as long as m and k satisfy
16("
log < (4))
€
where Qiagq = %log (%,uL(l —e )+ 1).
In the limit as f — 0, the right side above approaches
CQ(,LlfUA7 KL, Aa n, 6) X f 27) where CQ(,“Uv K“r, Aa n, 6)

iy 3
8e™ 8 (8uy+3)2 16(%)
L)

9“%

8y A
i (

Suy + 3)2(24 + 8aadd)2

e
k>1land m >
162a§dd

log

Remark. Following [3], the diameter A can be replaced by
the (often much smaller) depth? by using only those distances
that are “small enough”.

We refer the reader to [1] for the proof of Theorem 4 which
is similar in spirit to the proof of Theorem 2. This result tells
us that as long as m scales like O(f~2) and k > 1, the
species tree can be reconstructed (upto the location of the
root) reliably. It should be noted here that we assume that
for each population/branch e € E, the mutation rate . is
constant across gene trees; generalizing our analysis to the
case where the mutation rates are allowed to change is an
interesting avenue for future work.

The depth of an edge e is the length (under 7) of the shortest path between
two leaves crossing e; the depth of a tree is the maximum edge depth.

III. DISCUSSION

Irrespective of the sequence length k, the number of genes
m needs to satisfy m € Q(f~!) for consistent species
tree estimation. To see this, observe that any algorithm that
is able to estimate S reliably should be able to perform
a reliable hypothesis test between two shifted exponential
distributions. So, the lower bound follows from the fact
that Dy, (p(z;7a + f)|lp(x;7a8)) = f, where p(x;a) =
e~ @~ 1 {x >a} and Dgy (-||-) is the Kullback-Liebler di-
vergence. On the other hand, we know from [22] that even
without the confounding effect of the MSC, a total sequence
length (mk) of at least Q(f~2) is needed for consistent
estimation. These two together imply that there is a constant

C > 0 such that m needs to satisfy the following for consistent
f72
E

The results in this paper show that m € O(f~2) is
achievable irrespective of the value of k; in particular, a total
data set size of mk € O(f_2) is achievable. Prior to this, to
the best of our knowledge, the best complexity bounds were
provably attained by GLASS [13] (as shown in [17]) which
requires that m > O(f~1) and k > O(f~2), i.e., a total data
set size of mk € O(f~3). This raises two very interesting
open questions. (A) What is the precise tradeoff between m
and k for reliable recovery of S? (B) Is there a procedure
that attains all points (values of m and k) in this tradeoff,
as opposed to the current situation where it appears as though
GLASS meets the lower bounds for large k£ and our procedure
meets the lower bound for small k?

estimation of the species tree m > C' max { 7t

IV. SKETCH OF THE PROOFS

In this section, we will sketch the proofs of Theorem 2 and
3. For more details, we refer the interested reader to [1].

A. Sketch of the Proof of Theorem 2. For a pair of leaves
A, B € L, observe that for ay,,, > 0, we have

Ppas —E[pas] > cum/2]

~ ~ Qyum 7
=E {}P’ (pAB —E[pag] > 5 {61(433}i€[m]):|
~ 1 7 Qum 7
<E|P|pas — ooy Z pf&; > 1 {654)B}i€[m]

i€[m]

Qy

4m {693 Yicpm)

1 () .
Pl — —E
+ m g[ ]pAB [DaB] >

where in the first equation, 51(33 is the distance between leaves
A and B on the random gene tree G(*). Using Hoeffcling’s

]ge_ +

mkaym

inequality, we get P [pap — E[pag] >

Qum
2

mag

e 16

Now, notice that the probability of error is upper bounded by
the sum over all triplets ((A, B), C) of P[pap > pac]. Using
Theorem 1, we know that P[pap > pac]| is upper bounded
by Plpas — E[pas] > 24=] + P [E[pac] — Pac > 24=].
Therefore, from above, we get that Z((A’B)’C) P[pas > Dac]




is no less than 2(;’) e~mkatn/16 | g=maly/16) Picking m
and k as prescribed will guarantee that the probability of error
is upper bounded by e.

B. Sketch of the Proof of Theorem 3. Note that for any
4 leaves of the species tree A, B,C, D, there are only 2
possible topologies with respect to S (upto relabeling): (a)
((A,B),(C,D)) and (b) (((A, B),C), D). We will consider
the first case here and refer the reader to [1] for the second
case and other details.

In order to tackle case (a), we will use the notation from
Figure 2. Let 01, 03 and o3 be the common ancestors of (A, B),
(C,D) and (A, C) respectively. Let £4p be the event that the
lineages corresponding to A and B coalesce in the segment
(01, 03) of the tree in Figure 2 and let €45 be the event that
this does not occur. Similarly, we define the events £-p and
507D. To reduce notational clutter, for w,v € S, we will write
Ly to denote ZeEﬂ'E,U teTe. Now, for leaves XY € L,
let Zxy denote the random quantity %((5}(}/ — pxy), It
is easy to check that the quantities Zap — loj05 | €AB>
ZoD — Joyos | €aBs Zac, and Zpp have the same distri-
bution. Let Z denote this common random variable; this is
shown in Figure 2. Now, since dap = pap + 2Z4p, and
since conditioned on £4p, Zap < [to,0,, We have that

E [6_%5‘43] > e_%HAB E [8_%#0103

SAB} P(Eap)
I - [e—%Z} P(Eap) p (6)

A similar calculation yields a lower bound for |E [e~20cP].
On the other hand, notice that 4c = pac + 27 and épp =
wpp + 2Z. Therefore, we have

B [e-t] & [ 0]

E [6_%6‘40} E [6_%63[’}
P(EaB) — P(&cp) —-—
E[eA;Z} +P (5AB2) X - [ech } +P (&cp)

> [2’“ (1—e—f)+1} , @)

where in the last step we have used the fact that the random
variable Z stochastically dominates the random variable iy, Z s
where Z ~ Exp(1) and that that P[Exy] > 1 — e/
for each pair of leaves X,Y € L. For the second case,
(((A,B),C), D), one gets a lower bound [$ (1 —e~7)+1]
instead of (7). Taking logarithms on either side gives us
that dac + dpp > dap +dep +log (Spup (1—e™ ) +1).
Using a similar procedure, one can show that dac + dpp =
dap +dpc.
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